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Bayesian Analysis of Piping Leak
Frequency Using OECD/NEA Data
The estimation of piping failure frequency is an important task to support the probabi-
listic risk analysis and risk-informed in-service inspection of nuclear power plant sys-
tems. This paper describes a hierarchical or two-stage Poisson-gamma Bayesian proce-
dure and applies this to estimate the failure frequency using the Organization for
Economic Co-operation and Development/Nuclear Energy Agency pipe leakage data for
the United States nuclear plants. In the first stage, a generic distribution of failure rate is
developed based on the failure observations from a group of similar plants. This distri-
bution represents the interplant (plant-to-plant) variability arising from differences in
construction, operation, and maintenance conditions. In the second stage, the generic
prior obtained from the first stage is updated by using the data specific to a particular
plant, and thus a posterior distribution of plan specific failure rate is derived. The
two-stage Bayesian procedure is able to incorporate different levels of variability in a
more consistent manner. �DOI: 10.1115/1.4000343�
Introduction
Since the failure of piping system can have adverse effect on

he safety and reliability of a nuclear power plant, the piping
ailure frequency is an important input parameter to probabilistic
afety assessment �PSA� and risk-informed in service inspection
RI-ISI� of systems important to safety. In the design stage, reli-
bility and safety analyses conducted are generally based on ge-
eric failure rates given in the codes or standards. As far as an
perating plant is concerned, it is of interest to evaluate the plant-
pecific failure rates and to investigate their departure from ge-
eric reference values.

The estimation of the piping failure rate based on probabilistic
ethods using in-service data or relying on expert opinions has

een described in various studies, such as Refs. �1–3�. More re-
ently, U.S. Nuclear Regulatory Commission �USNRC� has pub-
ished a comprehensive handbook of parameter estimation for
robabilistic risk assessment �4� in which both frequentist and
ayesian inference methods are discussed. Because the nuclear
ower plants are highly reliable systems, piping failures tend to be
elatively rare events. In other words, empirical data for failure
ate estimation are quite sparse. In this situation, the Bayesian
ethod is preferred over the classical statistical methods.
This paper describes a two-stage Bayesian procedure to esti-
ate the plant-specific piping failure rate. The first step is to es-

ablish a common population variability curve �PVC� using the
ndustry wide data. The second step is to customize this distribu-
ion to a specific plant of interest using the data collected from this
pecific plant. The proposed approach is applied to estimate the
eak rate using the Organization for Economic Co-operation and
evelopment/Nuclear Energy Agency �OECD/NEA� pipe leakage
ata for the United States nuclear plants.

Literature Review
The use of Bayesian method in PSA started since mid-1970s

5,6�. A key obstacle in statistical analysis is the lack of data
egarding the failure of highly reliable nuclear power plant �NPP�
quipment. In such cases, the Bayesian method is quite useful as it
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provides a mechanism for incorporating other sources of informa-
tion as prior belief. Furthermore the Bayesian framework also
allows a propagation of basic event uncertainties through a logical
model. Siu and Kelly �7� presented a detailed tutorial on Bayesian
parameter estimation especially in the context of PSA.

In the plant-specific risk studies, the idea of using a generic
distribution reflecting the plant-to-plant variability as prior distri-
bution can be found in the reliability literature. Apostolakis et al.
�8,9� suggested that a generic distribution be constructed by using
expert judgment or standards. Vaurio �10� proposed a gamma dis-
tribution conjugate to the Poisson-distributed failure rate as a prior
distribution. The data from other plants were used to determine
this chosen prior by moment matching method.

The formulation of hierarchical �multistage� model is central to
modern Bayesian statistics due to flexibility to construct hierarchi-
cal priors and combine different levels of information. A general
purpose of this formulation is the assimilation of date from differ-
ent sources. The two-stage Bayesian approach can be considered
as a special case of the hierarchical Bayes, and it was initially
developed by Kaplan and coworker �11,12� and Fröhner �13,14�.

Kaplan �12� suggested lognormal distribution as the prior PVC
of failure rate in the first stage and a uniform distribution as hy-
perprior of the hyperparameters of the lognormal distribution.
Pörn �15� applied an idea of the two-stage Bayesian method to
estimate the component failure rates presented in the T-Book, a
handbook concerning reliability data of components in Nordic
nuclear power plants. This study adopted a contamination class
distribution as the prior of the failure rate, and then the uncertainty
associated with the contamination parameter is modeled by a non-
informative hyperprior. Reader can refer to Ref. �16� for more
detailed discussion about the contamination class of the priors.
Pörn’s model was reviewed by Cooke et al. �17� and further dis-
cussed by Meyer and Hennings �18�.

Hora and Iman �19� proposed a super population model in
which the failure rate for each plant is unique but related to the
failure rate of all other plants through the super population. Hofer
and co-workers �20–22� however pointed out the wrong order of
integration of improper integrals in the study of Hora and Iman
�19�. Readers are referred to Ref. �23� for a more detailed discus-
sion of this topic. Later Bunea et al. �24� applied this method to
pipe failure data obtained from German nuclear plants �ZEDB

database�.
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Bayesian Analysis

3.1 Problem Statement. The occurrence of the pipe failure
vent is modeled as a homogeneous Poisson process with failure
ate �. The number of failures, x, in an interval �0− t� are given by
he Poisson distribution

f�x��� =
��t�xe−�t

x!
�1�

he basic idea is that the failure rate for a specific plant, �i, is a
xed but unknown value. The failure rate in another similar plant

s �k, which is different from �i and an unknown constant.
Therefore, to model uncertainty associated with the failure rate

, it is treated as a random variable with gamma distribution

f����,�� =
��−1 exp�− �����

����
�2�

here �� · � denotes the gamma function. The average and coeffi-
ient of variation �COV� of � are given as � /� and 1 /��, respec-
ively. The gamma distribution is a conjugate prior.

Thus, in a fleet of if n plants, the underlying failure rates,
1 ,�2 , . . . ,�n, constitute a random sample from the prior distribu-

ion, Eq. �2�. The prior is also referred to as the population vari-
bility curve, and it models the plant to plant variability in the
ailure rate.

Ideally if in a large fleet of nuclear plants large amount of pipe
ailure data were available, a histogram of � could have been
enerated and fitted with a smooth probability distribution to de-
ive the prior PVC. However, in reality such large data do not
xist, which complicates the modeling of PVC. This second level
f uncertainty is modeled by treating the parameters � and � as
andom variables. This is the essence of the two-stage procedure.

Suppose pipe failure data are available from �n+1� plants. The
ailure data from a plant are summarized as the doublet �xi , ti�, i
1,2 , . . . ,n+1. Note that xj is the number of failures during the
bservation tj in an ith plant. The objective is to estimate the
ailure rate in �n+1�th plant using the data from n plants and also
ata available from the current plant of interest.

3.2 Hierarchical Model. The hierarchical Bayes approach is
ased on the use of hierarchical priors. Consider a random vari-
ble Y with distribution f�y ��1�, where �1 is a distribution param-
ter. A prior distribution of the uncertain parameter �1 is specified
s f��1 ��2�, which is indexed by another parameter �2, referred to
s the hyperparameter. Instead of assigning a fixed value to �2,
nother prior distribution can be assigned to �2, which, in turn,
ay be indexed by a hyperparameter �3 and so on. Thus, in this

pproach the prior distribution is specified in a hierarchical fash-
on in a multiple stages, or hierarchies. The parameter �i �i
2,3 , . . . ,k� is referred to as ith hyperparameter in the prior dis-

ribution and �i could be a vector.
The mathematical structure of a general k-level hierarchical
odel is described as follows. Given a vector of the observed data

, the conditional updated distribution or posterior of �1 is written
s

f��1�y� = c−1�
�2

¯�
�k

f�y��1�f��1��2� ¯ f��k−1��k�f��k�d�k ¯ d�2

�3�

here c is normalizing constant and must be chosen to satisfy

�1f��1 �y�d�1=1. In case of a two-stage model, Eq. �3� reduces to
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f��1�y� = c−1�
�2

f�y��1�f��1��2�f��2�d�2 �4�

Although there is no theoretical reason for limiting hierarchical
priors to just two stages, more than two stages rarely used in
practice �e.g., Refs. �25,26��.

3.3 Two-stage Bayesian Procedure

3.3.1 Assumptions.

�1� The hyperparameter � has density f���.
�2� Given �, the parameters 	�i
 are identically and indepen-

dently distributed �iid� with density f�� ���.
�3� Given 	�i
, the data 	xi
 are independent of density f�xi ��i�

and independent of � and of all �s other than �i.

3.3.2 Calculation Procedure. Using the law of total probabil-
ity, the mixed distribution of X has density, given � as

f�x��� =�
�

f�x���g�����d� �5�

and xi is iid with this density. Likewise, we write f��n+1 �xn+1� to
include the hyperparameter �

f��n+1�xn+1� =�
�

f��n+1�xn+1,��f���xn+1�d� �6�

Separating the evidence xn+1 of the right side into xn and xn+1, Eq.
�6� is rewritten as

f��n+1�xn+1� =�
�

f��n+1�xn+1,xn,��f���xn+1,xn�d� �7�

Applying the Bayes’ theorem on both terms in the integral and
using the assumptions 2 and 3, the first term of integrand in Eq.
�7� turns out to be

f��n+1�xn+1,xn,�� =
f�xn+1��n+1�f��n+1���

f�xn+1�xn,��
�8�

and the second term of integral in Eq. �7� is

f���xn+1,xn� =
f�xn+1�xn,��f���xn�

f�xn+1�xn�
�9�

Substituting Eqs. �8� and �9� into Eq. �7�, we get

f��n+1�xn+1� =�
�

f�xn+1��n+1�f��n+1���f���xn�
f�xn+1�xn�

d� �10�

Ignoring the normalization constant f�xn+1 �xn�, Eq. �10� can be
simplified to

f��n+1�xn+1� � f�xn+1��n+1��
�

f��n+1���f���xn�d� �11�

where f�� �xn� is obtained, by using Bayes’ theorem and ignoring
the normalizing factor, as �see Appendix A for derivation�

f���xn� � ��
i=1

n �
�i

f�xi��i�f��i���d�i f��� �12�

Now we can see that Eq. �11� is important for two reasons. First,
it separates the role of xn+1 and xn. Second, it shows how the
inference procedure is worked in two stages. The integral part of
the Eq. �11� is obtained as population distribution �PVC� in the
hierarchical Bayesian model. However, it is actually the predictive
distribution of �n+1, denoted as f��n+1 �xn�, based on Eq. �12�

because it has the form
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f��n+1�xn� = E��xn
�f��n+1���� �13�

quation �11� clearly defines the two stages in the Bayesian infer-
nce for �n+1. In the first stage, the supplementary information xn
s used to generate a posterior distribution of hyperparameter �,
alled the hyperposterior distribution, from Eq. �12�. Then a popu-
ation distribution or predictive distribution f��n+1 �xn� of �n+1 is
btained from Eq. �13� based on the hyperposterior distribution.

The procedures for inference �n+1 using the two-stage Bayesian
nalysis can be summarized as follows.

�1� Establish the hyperprior f��� based on the information
available. Noninformative prior is commonly used.

�2� Evaluate the likelihood function of xn, f�xn ���, which is the
part enclosed in the square brackets of the Eq. �12�.

�3� Evaluate the hyperposterior distribution f�� �xn� from Eq.
�12� using the evidence from other similar plants.

�4� Evaluate the population variability distribution f��n+1 �xn�
from Eq. �13� for stage 2.

�5� Evaluate the likelihood function of the plant-specific ob-
served data, f�xn+1 ��n+1�.

�6� Evaluate the posterior distribution f��n+1 �xn+1� from Eq.
�11� using the population distribution as the prior distribu-
tion obtained from step 3.

3.3.3 Discussion. Equation �3� illustrates the general formula-
ion of the hierarchical Bayesian model. This section briefly dis-
usses the relationship of the hierarchical Bayes with the classical
ayesian method and empirical Bayesian �EB� method.

3.3.3.1 Single stage Bayesian method. When only one-stage
rior information is available, the hierarchical Bayesian model
educes to the simple and well known Bayes model for the failure
ate �n+1 of the specific plant n+1.

f��n+1�xn+1� � f�xn+1��n+1�f��n+1� �14�

he prior distribution for �n+1 can be selected as a gamma distri-
ution with parameters �S and �S, f��n+1 ��S ,�S�. Because the
ean and coefficient of variation of �n+1 are given as �S /�S and
/��S, respectively, �S and �S can be estimated as �COV��n+1��−2

nd �S /E��n+1�, respectively. Because the gamma distribution and
oisson distribution are conjugate, the posterior distribution of
n+1 turns out to be gamma distribution with parameters �xn+1
�S , tn+1+�S�, in which xn+1 and tn+1 are number of failures and
perating time observed in the specific plant. The posterior mean
f �n+1 can simply be calculated as �xn+1+�S� / �tn+1+�S�. We re-
er to Eq. �14� as simple Bayes because it does not use the infor-
ation for other plants.

3.3.3.2 Empirical Bayesian method. This method involves the
se of classical techniques to fit the prior distribution on the basis
f data. In EB method, the prior distribution of �n+1 can be se-
ected as a gamma distribution with parameters �E and �E, as in
he case of the simple Bayesian method. Instead of assigning the
rior mean and COV to �n+1, the parameters �E and �E are esti-
ated by using the data from other plants in maximum likelihood
ethod. As in the simple Bayesian method, the posterior distribu-

ion of �n+1 is obtained as also gamma distribution with param-
ters �x+�E , t+�E�. This method uses fixed point estimates �E

nd �E.

3.3.3.3 Hierarchical Bayesian method. Instead of using a de-
erministic prior distribution, in the simple one-stage Bayesian
nd empirical Bayesian methods, the prior f��n+1 �� ,�� in the
wo-stage Bayesian method is uncertain. That is, instead of using
he point estimate for � and �, the parameters � and � in the prior
re treated as random variables. The two-stage hierarchical Baye-
ian method is illustrated in Eq. �11� where the prior of �n+1 is
btained as average over the hyperposterior distribution of � and

, which is updated by using the information for other plants.

ournal of Engineering for Gas Turbines and Power
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3.3.4 Implementation. An advantage though controversial is
that the Bayes’ theorem can incorporate the prior knowledge from
other sources before making observation as prior distribution. The
effect of the prior distribution on the estimation decreases with
increasing observation. However, if this prior distribution can well
represent the reality, we can make estimations with a higher de-
gree of belief, especially for a small size of sample. When there is
no prior information available, a noninformative prior is common.

The first step in the two-stage Bayesian analysis is to assign a
hyperprior distribution to � and � in the population variability
distribution. The choice of a form for the second stage or high
stage prior seems to have relatively little effect. Because we have
no readily available information regarding the hyperprior, nonin-
formative prior based on the concept of data translated likelihood
�27� is adopted for them.

Jeffreys’ rule �28� requires that the prior distribution is invariant
under one-to-one transformation. This invariant prior is propor-
tional to the square root of the determinant of Fisher’s �informa-
tion� matrix of the population variability distribution. Application
of Jeffreys’ rule to the gamma distribution in Eq. �2� yields the
joint hyperprior of � and � as

f��,�� �
1

���
�15�

There are two likelihood functions in the first and second stages.
In the first stage, the likelihood of the observations xn, f�xn �� ,��,
from other plants is used to estimate the hyperposterior distribu-
tion. As mentioned in the step 2 of the two-stage Bayesian proce-
dure, f�xn �� ,�� is the part enclosed in the square brackets of the
Eq. �12�. Replacing the � with �� ,��, we have

f�xn��,�� = �
i=1

n �
�i

f�xi��i�f��i��,��d�i �16�

Substituting the Eqs. �1� and �12� into �16�, the likelihood of xn
turns out �Appendix B gives the derivation�

f�xn��,�� = �
i=1

n
��xi + ��
xi ! ���� � �

� + ti
��� ti

� + ti
�xi

�17�

The likelihood function of xn+1 in the second stage comes from
the Poisson distribution

f�xn+1��n+1� =
��n+1tn+1�xn+1exp�− �n+1tn+1�

xn+1!
�18�

Incorporating the hyperprior distribution in Eq. �15� and the like-
lihood function in Eq. �19�, the hyperposterior distribution of �
and � is

f��,��xn� � �
i=1

n
��xi + ��
xi ! ���� � �

� + ti
��� ti

� + ti
�xi

f��,�� �19�

The population variability distribution is mathematically a predic-
tion distribution of �n+1 over the hyperposterior distribution of �
and �. From Eq. �13�, the PVC can be obtained

f��n+1�xn� =�
�

�
�

��n+1
�−1 exp�− ��n+1���

����
f��,��

��
i=1

n
��xi + ��
xi ! ���� � �

� + ti
��� ti

� + ti
�xid�d� �20�

4 Simulation Study
A simulation study is present to illustrate the two-stage Baye-

sian procedure for estimating the plant-specific failure rate. Sup-

pose we have 31 plants and the 31st plant is of interest.
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�1� Simulate the hyperparameters � �=1.84� and � �=8.83�
from a joint lognormal distribution with mean vector � and
variance-covariance matrix �

� = � ln 2

ln 10
, � = � 0.62 0.8 � 0.6 � 0.9

0.8 � 0.6 � 0.9 0.92 
�21�

�2� Simulate the failure rates �i for each plant i=1, . . . ,31,
from the gamma distribution with parameters � and �. The
�31, �31=0.2733, will be again estimated using proposed
method.

�3� Simulate the failure data from the Poisson distribution for
each �i. For simplicity, the observation time of each plant is
assumed to be the same, 10 years. Therefore, we simulate
31 vectors of failure data xi for each plant and x31=3.

Table 1 summarizes the failure data generated for the other 30
lants and is used to estimate the PVC. For the 31st plant, we
ave �31=0.2733 and x31=3.

4.1 Stage 1. The noninformative hyperprior of � and � is
dopted in the inference. The marginal hyperposterior probability
ensity functions �PDFs� of � and � are obtained and shown in
ig. 1 by using the data from 30 plants given in Table 1. It shows

he distributions are close to the lognormal parent used in simu-
ation. The statistics of � and � obtained from the hyperposterior
istribution are compared with those of the lognormal distribution
n Table 2. The estimated values from the two-stage Bayes meth-
ds are close to those of the parent lognormal distribution. Figure
compares the PVC of the failure rate with the assumed parent. It

hows that the estimated PVC is close to the parent. The estimated
ean value and standard deviation are 0.2189 and 0.159, respec-

ively, which are close to the values 0.2081 and 0.153 calculated

Table 1 Simulated failure data

i �i xi

1 0.3906 6
2 0.3850 3
3 0.0925 0
4 0.2947 3
5 0.0307 1
6 0.1026 0
7 0.2099 3
8 0.1132 0
9 0.3787 6
10 0.1006 1
11 0.0847 2
12 0.2999 5
13 0.3689 1
14 0.0302 0
15 0.0884 0
16 0.1754 2
17 0.3204 4
18 0.0849 1
19 0.6011 6
20 0.2177 3
21 0.5146 6
22 0.0215 0
23 0.3952 1
24 0.0843 1
25 0.1734 2
26 0.0366 0
27 0.2397 2
28 0.1244 0
29 0.4795 4
30 0.0935 2
rom the simulated values of � and �.

72902-4 / Vol. 132, JULY 2010
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4.2 Stage 2. In the stage 2, the PVC obtained from the stage
1 is adopted as the prior distribution of the failure rate �31. The
posterior distribution of �31 is obtained by updating the PVC us-
ing data from 31st plant. Both PVC and posterior distribution are
shown in Fig. 3. The mean value and standard deviation of �31 are
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Fig. 1 Posterior distribution of hyperparameters „a… � and „b…
�

Table 2 Comparison of statistics

Parameter

Mean Standard deviation Median

LN TB LN TB LN TB

� 3.19 2.84 2.10 1.88 2.00 2.25
� 11.49 13.26 12.85 9.00 10.00 10.50

LN: parameters of parent lognormal distribution.
TB: results obtained from the two-stage Bayes method.

0 0.2 0.4 0.6 0.8 1
0
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λ

f(
λ)

PVC: µ
λ

= 0.2189, σ
λ

= 0.159

PVC, f (λ | x
30
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Fig. 2 Comparison of estimated and parent PVCs
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alculated as 0.2549 and 0.111, respectively. The following obser-
ations are noteworthy: �1� the estimated mean failure rate is
arger than that of PVC and close to 0.2733, which is used to
imulate the failure data of the 31st plant. �2� The uncertainty of
31 in terms of standard deviation is 0.111, which is smaller than

hat of PVC, due to the additional data available of the plant.

Application
In this section, we analyze piping leakage data obtained from

uclear power plants �pressurized water reactors �PWRs��. The
iping leakage events have been recorded from 1970 up to June
007. 29 PWR NPPs with initial reactor criticality in 1980s are
elected as plants with similar conditions. There are 29 leakage
vents in 29 PWRs during a total of 652.08 observation years.
able 3 lists the observed number of failure, xi, and observation
eriod, ti, in years, for 10 of 29 plants. If the data were from a
omogeneous Poisson process, then the constant leak rate can be
stimated as the ratio of the number of leakage events and the
otal exposure time. The leak rate under this assumption is calcu-
ated to be 0.045 per plant-year. Three types of Bayesian methods,
imple Bayesian method, empirical Bayesian method, and two-
tage Bayesian method, are used to estimate the failure rate.

5.1 Single Stage Bayesian Method. The prior distribution of
can be selected as a gamma distribution with parameters � and

, as in Eq. �2�. The mean leak rate is estimated as the ratio of the
umber of failure to the total operating time. The COV of � is
ssigned from the engineering judgment, say, 1.0. For plant 10 in
able 4, x and t are 0 and 24.79, respectively, and �S and �S
stimated from the other 28 plants are 1.00 and 21.63. Its posterior
ean leak rate is therefore 0.0215 with a standard deviation of

.0215 compared with the prior mean 0.0462, which is the num-
er of leakage events divided by the total operating time of other
8 plants.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

λ

f(
λ)

µ
λ31

= 0.2549, σ
λ31

= 0.111

f (λ
31

| x
31

)

PVC, f (λ | x
30

)

Fig. 3 Estimated PDF of failure rate „�31…

Table 3 Mean leak rate „�… estimated from two-stage Bayes

i xi

ti
�year� �i

PVC 	i
PVC �i

TB 	i
TB

1 2 20.21 0.0435 0.0329 0.0573 0.0292
2 1 20.41 0.0452 0.0343 0.0458 0.0241
3 3 22.07 0.0421 0.0303 0.0670 0.0335
4 2 22.30 0.0437 0.0334 0.0558 0.0279
5 1 22.70 0.0453 0.0345 0.0447 0.0233
6 3 23.71 0.0423 0.0308 0.0656 0.0322
7 1 25.53 0.0455 0.0345 0.0433 0.0223
8 2 26.09 0.0440 0.0340 0.0534 0.0260
9 0 19.10 0.0467 0.0311 0.0351 0.0211
10 0 24.79 0.0471 0.0307 0.0332 0.0199

VC: results of PVC obtained from the two-stage Bayes.

B: results of specific plant obtained from the two-stage Bayes.
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5.2 Empirical Bayesian Method. The prior distribution of �
is selected as a gamma distribution with parameters � and � as
did in the simple one-stage Bayesian method. The parameters are
estimated using the optimistic method by Vaurio �10�. For plant
29, x and t are 0 and 24.79, respectively, and from the other 28
plants estimates are �E=0.77 and �E=17.28. Its posterior mean
leak rate is therefore 0.0183 with a standard deviation of 0.0209,
compared with the prior mean 0.0445, which is �E /�E, with a
standard deviation of 0.0507.

5.3 Hierarchical Bayesian Method. Instead of using the
point estimate for � and �, the hyperposterior distribution of �
and � are estimated by the Bayesian method �Eq. �12��. For plant
29, the posterior mean leak rate is estimated as 0.0332 with a
standard deviation of 0.0199, compared with the prior mean of
0.0471 with a standard deviation of 0.0307.

Three Bayesian methods described above are applied to the all
29 NPPs. For the length of the paper, only the results of ten plants
are listed in Tables 3 and 4. �i

PVC in the table denotes the mean
leak rate of PVC for ith plant obtained in the first stage, and �i

TB

denotes the mean value of the plant-specific �ith� leak rate ob-
tained by updating the average PVC in the second stage of two-
stage Bayes. Note that when the inference is made for the plant i,
the failure data �xi , ti� of the ith plant are excluded and only used
in the second stage, while the data from the other 28 plants are
used for estimation of PVC in the first stage. �S and �EB denote
the estimates of the simple Bayes and empirical Bayes,
respectively.

The results from 29 NPPs and Tables 3 and 4 show the follow-
ing.

�1� The value of �i
PVC ranges from 0.0421 to 0.0471 with a

mean of 0.0454 and a standard deviation of 0.0021. The
small variation in the �i

PVC shows that the PVCs obtained
for different plants are very similar, which implies that the
estimated PVC is a good approximation.

�2� Compared with the results from simple Bayesian method,
the estimated mean leak rate � with two-stage Bayes is
smaller when failure data are available, i.e., x�0. When
x=0, two-stage � is larger than that obtained from simple
analysis. However, the uncertainty of � estimated with two-
stage Bayes is about 8–26% smaller, which means that the
two-stage Bayes gives more precise estimates.

�3� Compared with the results from empirical Bayes, the esti-
mated mean leak rate � with two-stage Bayes is slightly
smaller when x�0, while it is slightly larger when x=0.
However, the uncertainty of � estimated with two-stage
Bayes is about 5–30% smaller, which means that the two-

Table 4 Mean leak rate „�… estimated from simple and empiri-
cal Bayes

i xi

ti
�year� �i

S 	i
S �i

EB 	i
EB

1 2 20.21 0.0688 0.0397 0.0731 0.0448
2 1 20.41 0.0465 0.0329 0.0462 0.0355
3 3 22.07 0.0864 0.0432 0.0938 0.0489
4 2 22.30 0.0658 0.0380 0.0693 0.0425
5 1 22.70 0.0443 0.0313 0.0436 0.0335
6 3 23.71 0.0835 0.0418 0.0905 0.0472
7 1 25.53 0.0417 0.0295 0.0407 0.0312
8 2 26.09 0.0609 0.0352 0.0633 0.0388
9 0 19.10 0.0244 0.0244 0.0210 0.0241

10 0 24.79 0.0215 0.0215 0.0183 0.0209

S: results obtained from simple Bayes.
EB: results obtained from empirical Bayes.
stage Bayes gives more precise estimates.
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Figure 4 shows the PVCs obtained for plants 1, 2, and 3 with
umber of failures 2, 1, and 3, respectively. Although the number
f failures varies from 1 to 3, the PVCs are quite similar, which
mplies that it is appropriate to select the PVC obtained in the first
tage as the prior distribution in the second stage inference. Figure

shows PDFs of plant-specific leak rate. The estimated mean
alues of the leak rate for ten plants are listed in Table 3.

Figure 6 illustrates the posterior distribution of leak rate for
lant 1 obtained from three Bayesian methods. It can be clearly
een that the uncertainty of the leak rate estimated from two-stage
ayes is quite smaller than the other methods. And as aforemen-

ioned, the posterior distribution estimated by simple Bayes is
reatly affected by the prior because only the information from
he plant itself is used.

Conclusions
This paper describes a two-stage Bayesian model for estimating

he plant-specific failure rate. The general hierarchical Bayesian
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model is described and compared with the simple and empirical
Bayesian models. A simulation study is presented to illustrate the
use of the two-stage Bayesian procedure with the failure data
generated from Poisson process and prior gamma density. The
simulation results show that the two-stage Bayesian method works
well in the inference.

The two-stage Bayesian method is applied to the pipe leak data
collected from the U.S. PWRs. The results show that the popula-
tion variability curves obtained in the first stage for different NPPs
are very close to each other, which imply that the estimated PVC
can serve as a prior in the plant-specific failure rate analysis. By
using the pipe leak data of a specific plant, the PVC is updated
and thus plant-specific distribution of the leak rate is obtained.
The results of the simple Bayes and empirical Bayes are presented
for comparison. The paper shows that the uncertainty associated
with leak rate estimated from the two-stage Bayes is smaller than
that associated with estimates of the single stage Bayesian
method.
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Nomenclature
COV 
 coefficient of variance

EB 
 empirical Bayes
NEA 
 Nuclear Energy Agency
NPP 
 nuclear power plant

OECD 
 Organization for Economic Co-operation and
Development

PDF 
 probability density function
PSA 
 probabilistic safety assessment
PVC 
 population variability curve
PWR 
 pressurized water reactor

RI-ISI 
 risk-informed in-service inspection
iid 
 identically and independently distributed

Appendix A: Derivation of Eq. (12)
By Bayes’ theorem, the hyperposterior distribution f�� �xn� can

be written as

f���xn� � f�xn���f��� �A1�

Extending the Eq. �5� for mixed distribution f�xn ���, we get

f���xn�

� ��
�1

¯�
�n

f�xn��1, ¯ ,�n,��f��1, ¯ ,�n���d�1 ¯ d�n
�f��� �A2�

By Assumption 3 that given � and 	�i
, xi have density f�xi ��i�,
independent of � and of all �’s other than �i, we have

f�xn��1, . . . ,�n,�� = �
i=1

n

f�xi��i� �A3�

and by Assumption 2 that given �, 	�i
 is iid, we get

f��1, . . . ,�n��� = �
i=1

n

f��i��� �A4�
Equation �A2� becomes
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f���xn� ���
�1

¯�
�n

�
i=1

n

f�xi��i�f��i���d�1 ¯ d�n� f���

�A5�
ince the product now involved no “cross terms,” we may inter-
hange the product operator and the integral and get Eq. �12�.

ppendix B: Derivation of Eq. (17)
The part enclosed in the square brackets of the Eq. �12� can be

nterpreted as the likelihood of xn given fixed �, f�xn ���, where �
an be a vector, for example, �= �� ,��, then Eq. �12� becomes in
he form of Eq. �16�.

Suppose that the failure event follows Poisson distribution with
ensity f�x ��� expressed in Eq. �1�, and further suppose that �
ollows gamma distribution f�� �� ,�� expressed in Eq. �2�. With
qs. �1� and �2�, the integrant in Eq. �16� can be written as

��iti�xiexp�− �iti�
xi!

·
�i

�−1 exp�− ��i���

����

=
�i

xi+�−1 exp�− �i�ti + ����ti + ��xi+�

��xi + ��
·

��xi + ��
xi ! ����

·
ti
xi��

�ti + ��xi+�

�B1�
he first term of the right side of Eq. �B1� is the gamma density
ith parameter �xi+� , ti+��. Because the second and third terms
o not include �i, the integration with respect to �i is simply the
roduct of the second and the third term. The likelihood function

f�xn �� ,�� in Eq. �16� reduces to Eq. �17�.
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